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Abstract

A common approach to characterizing a sensory neuron’s response to stimuli is to use a
probabilistic modeling approach. These models use both the stimulus and the neuron’s response
to the stimulus to estimate the probability of the neuron spiking. This project will investigate
some of the well known approaches, starting with simple linear models and progressing to
more complex nonlinear models. All models considered use the idea of a “linear receptive
field” to characterize a feature subspace of the stimulus on which the neuron’s response is
dependent. Both moment-based estimators and maximum-likelihood estimators will be used for
fitting parameters, dependent upon the model.
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1 Introduction

A fundamental area of interest in the study of single neuron computation is the relationship be-
tween the stimuli and the neural response. There are two distinct approaches to this problem, one
motivated by the actual biological processes of a neuron and the other motivated by a functional
representation of the neuron’s behavior.

The biological models follow more of a bottom-up paradigm, modeling intrinsic biological pro-
cesses that produce the neuron’s behavior. Some of the earliest work on neuron modeling followed
this approach, from Lapique’s integrate-and-fire model (1907) [1] to Hodgkin and Huxley’s set of
nonlinear differential equations that describe ion channels and voltage differences across the cell
membrane (1952) [2]. More recent approaches have utilized a probabalistic modeling framework.
This top-down approach does not attempt to capture the reality of how a neuron processes data,
but instead tries to faithfully reproduce the functional behavior of a neuron.

Biological models have several inherent issues that prevent their practical implementations,
which motivated the development of probabilistic models. Biological models contain many pa-
rameters that govern the underlying physical processes, such as ion channel conductances. These
parameters are often difficult or impossible to measure experimentally, and their estimation is not
much easier given the nonlinear and noisy nature of neurons. Another drawback to biological mod-
els is that they tend to be deterministic models; with any deterministic model we can of course
introduce noise, but again this requires knowledge of the source or the structure of the noise.

Since techniques in neuroscience are now able to supply us with increasingly detailed physiolog-
ical data, and since the nervous system itself is probabalistic, the statistical description of a neuron
seems like a natural avenue of exploration [6]. Many of these models are parameterized (including
some detailed in this paper), but advances in modeling over the past decade have led to robust and
efficient schemes for estimating the parameters of these probabilistic models, which has given them
an edge over their biological counterparts.

This paper follows the development of these probabilistic models. It details both linear and
nonlinear models, and introduces two of the techniques commonly used to estimate the parameters
of the given models.

2 Linear Models

Before considering the specific models investigated it will be useful to explain a basic linear model
widely used throughout the neuroscience field. The goal of the linear model is to represent the
selectivity of the neuron’s response to particular features of the stimulus. This selectivity means
that certain regions of the stimulus space, called the feature subspace or the receptive field, are more
important than others in determining the resulting action of the neuron. The linear models operate
by projecting the stimulus onto these lower dimensional subspaces, then subsequently mapping this
projection nonlinearly into a firing rate. This firing rate is interpreted as a rate parameter for an
inhomogeneous Poisson process that will then give the probability of the neuron spiking [6].

For the remainder of the paper we will assume that we are modeling a sensory neuron in the
visual cortex. The stimulus is a single grayscale pixel that stays the same value for a fixed time
interval ∆t, then changes value instantaneously. This stimulus is represented by a stimulus vector
s(t), where each component is the pixel’s value for a time duration of ∆t seconds. The response
data is a list of times that the neuron spiked during presentation of the stimulus.
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It should be noted than when describing this model as “linear”, we are refering to the manner
in which the stimulus is processed before a nonlinear function maps this into the rate parameter.
The form of the linear model described above is called the Linear-Nonlinear-Poisson (LNP) model,
and is given by the equation

r(t) = F (k · s(t)) (1)

where k is the linear receptive field, s(t) is the stimulus, F is a nonlinear function, and r(t) is the
resulting rate parameter. The linear receptive field k is what we wish to find, s(t) is a portion
of the stimulus whose size depends on the size of k, and F is generally a sigmoidal function that
ensures the firing rate is not negative. The following sections will develop different ways in which
to estimate k and F , the unknowns quantities of this equation.

3 Moment Based Estimators

Moment based estimators will be the first technique we consider for finding parameters in the above
model. The general idea is that the stimulus is a group of points in stimulus space; the stimuli that
elicited spikes are a separate group of points in this same stimulus space, and we want to describe
the ways in which these two groups differ. The first approach, the Spike-Triggered Averge (STA),
will look for a difference in the means of these groups, or the difference in the first moment. The
second approach expands upon the STA by looking at the difference in the second moment, and is
hence called the Spike-Triggered Covariance (STC).

3.1 The Spike-Triggered Average

The first way in which we will be estimating the parameters of the LNP is through a technique called
the Spike-Triggered Average (STA). The STA assumes that the neuron’s response is completely
determined by the stimulus presented during a predetermined time interval in the past, and is
defined as the mean stimulus that elicited a spike [4]:

STA =
1

N

N∑
n=1

s(tn) (2)

where N is the number of spikes elicited by the stimulus and s(tn) is the stimulus that elicited the
nth spike. Defined in this way, the STA is a linear receptive field that the neuron is responsive to,
and filtering the stimulus through the STA projects the stimulus onto a lower-dimensional subspace.
As long as the input stimulus is spherically symmetric (values in each dimension have a distribution
with zero mean), we can use the STA as the estimate for the linear filter k in the LNP model [4].

Now that the filter has been determined all that is left is to estimate the nonlinearity F . In
theory we can choose a parametric form of F and fit the parameters using the given data; however,
in practice an easier solution is sought. The literature commonly uses what is known as the
“histogram method”, which essentially creates a discretized version of F [3]. The input space of
k · s(t) is divided into bins and the average spike count of each bin is calculated using k, s(t) and
the known spike times. In this way we recover a function that has a single value for each bin, and
new data can be tested on the model by filtering the new stimulus with k and using the resulting
bin value to estimate the firing rate.
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3.1.1 STA Implementation

The implementation of the STA is a relatively straightforward process. What needs to be taken
into account is the data that is available to work with: the stimulus vector, and a list of observed
spike times. To make the implementation easier the first task is to transform the spike time list
into a vector that is the same size as the stimulus vector, with each element holding the number of
spikes observed during that time interval. In practice this vector is mostly zeros, with some entries
set to one and very few entries set to two or more.

The result of the STA algorithm is shown in figure 1(a) for a filter size of 20 time steps. One
aspect of implementing this algorithm that needs to be considered is how far back in the stimulus
vector to look at each spike. We can see that there are stimulus features going back to about
15 time steps, and then the recovered filter settles down to zero. This is precisely because the
data we are working with follows a Gaussian distribution with zero mean. Here we are seeing that
the neuron is no longer detecting stimulus features, and instead we are seeing the average of this
Gaussian noise. Hence by inspection we can choose the filter size to be 15 time steps, which will
be used for the filter size in the remainder of the paper.
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Figure 1: Left: The recovered filter using the STA algorithm for a filter size of 20 time steps. Right: Plotting
the nonlinear response function on top of the generator signal distribution shows the relation between the
two, which is more important than the particular values each takes. This response function is for a filter of
length 15 time steps and an upsampling factor of 1.

The filter that is recovered by the STA has a resolution that is restricted by the frequency of
the stimulus change. If we want a higher resolution in the filter we need to sample the stimulus
more often, say by a factor of n. The stimulus filter will grow from it’s original size |s| to a size of
n ∗ |s|, and the time interval between samplings will decrease by a factor of n.

If the stimulus is then upsampled by a factor n ≥ 1 the resolution of the filter will be increased
accordingly, as shown in figure 2(b).

As mentioned previously, the common approach to modeling the nonlinear response function F
in the literature is to use the “histogram method”, which bins the values of the generator signal
(k · s(t)) and finds the average spike count for each bin. The result is a discretized version of the
response function; given a certain signal s′(t), we can compute k · s′(t), find which bin this value

5



−125.1 −100.1 −75.1 −50.0 −25.0 0.0

0

time (ms)

 

 

upsample by 1
upsample by 2
upsample by 4

Figure 2: Left: Upsampling the stimulus vector by a factor of 2. Right: Upsampling the stimulus vector
produces a filter with higher resolution. Filters shown are 15 original time steps long.

belongs to, and F will return the average spike count we can expect from that particular signal.
Notice that the actual value of the generator signal is not of the utmost importance. We

can scale the generator signal by some factor, and the nonlinear function will change accordingly.
Instead what we are interested in is the value of the nonlinear response function relative to the
distribution of the generator signal; for this reason it is most instructive to look at the response
function overlaying the generator signal distribution, as shown in figure 1(b).

3.1.2 STA Validation

The STA algorithm has two components that need to be validated; the first is the implementation
of the routine that estimates the filter, and the second is the implementation of the routine that
estimates the nonlinear response function.

In order to validate the recovery of the filter, it suffices to check that the program properly
locates the spikes and averages the stimulus that precedes each spike during a certain temporal
window. We first populate a stimulus vector with 15000 time samples drawn from a Gaussian
distribution. We then create an artificial filter that is 10 time steps long, and insert this in place of
the Gaussian white noise at random points throughout the stimulus vector. Each time the artificial
filter is inserted a spike is recorded immediately proceeding it. At this point we now have a stimulus
vector and a corresponding spike vector, and the stimulus that precedes each spike is exactly the
same. If the implementation of finding the filter is correct it should directly recover the artificial
filter.

In practice the recorded spikes are not necessarily spaced far apart. It happens on occasion
that the stimuli corresponding to two different spikes overlap each other. In order to capture this
possibility the plots below show the recovered filter when 20 filters are inserted (no overlap) and
when 3000 filters are inserted (substantial overlap). The STA program exactly recovers the filter
for 20 spikes, and recovers a similar filter to the original for 3000 spikes. Note that the data that
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Figure 3: Visual representation of the creation of an artificial stimulus vector and corresponding spike vector
for validation of the STA code.

we are working with has 14391 time steps in the stimulus filter and 2853 corresponding spike times.
The validation of the histogram method is not as straightforward as it is for the filter. For an

explanation and proof of the validation please see appendix A.

3.2 The Spike-Triggered Covariance

The Spike-Triggered Covariance (STC), much like the STA, uses the idea of projection onto linear
subspaces of the stimulus to reduce the dimensionality of the input to the model while still allowing
the reduced input to maintain the salient features of the original.

Interpreting the STA and the STC geometrically can be useful in visualizing the process [4].
There are many points in stimulus space, the dimension of which is determined by the filter size
we choose. Some of these points represent stimuli that did not trigger a spike (the gray points in
figure 5(a)) and others represent stimuli that did trigger a spike (the black dots in figure 5(a)).
The STA can be interpreted as the difference between the means of the raw stimulus data (black
and gray points) and the spike-triggering stimulus data (the black points).

The STC builds on this idea and is defined as the difference between the variances of the raw
stimulus data and the spike-triggering stimulus data. In practice the easiest way to interpret the
data is by projecting out the STA from the stimulus first, and then finding the covariance of the
spike-triggering stimuli:

STC =
1

N − 1

N∑
n=1

[
s(tn)− STA · s(tn)

STA · STA
STA

][
s(tn)− STA · s(tn)

STA · STA
STA

]T
(3)

This is shown in figure 5(b), where the STA (equation 2) has been projected out of the raw stimulus
data.
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Figure 4: Top: Plot of the filter recovered by the STA program. Middle: Plot of the artificial filter created
to validate the STA program. Bottom: Error between artificial filter and recovered filter. Artificial filter is
10 time steps long, with no upsampling.

Once we have constructed the STC from the data, we want to perform what is essentially a
principal component analysis on the STC to ascertain which directions in stimulus space have the
smallest and largest variances. The principal component analysis will be carried out on the matrix

Γ =
1

N − 1

N∑
n=1

[
s(tn)− STA · s(tn)

STA · STA
STA

][
s(tn)− STA · s(tn)

STA · STA
STA

]T − s(tn)s(tn)T (4)

where the first term is the spike-triggered covariance, the second term is the covariance of the
stimulus, and again the STA is defined in equation 2. Subtracting out this covariance will get rid
of any correlations that are present in the stimulus.

For the purpose of this project we will only be interested in the direction with the smallest
variance, though the technique is not limited to this. The direction of smallest variance is the
eigenvector associated with the smallest eigenvalue. Any stimulus vector with a significant compo-
nent along the direction of this eigenvector has a much lower chance of inducing a spike response,
hence this direction is associated with an inhibitory neural response.

With this information in hand we can now use the STA, associated with an excitatory neural
response, and this new vector recovered from the STC analysis, to construct a model that uses
both of these subspace features to filter the data. The new model becomes

r(t) = F (ke · s(t),ki · s(t)) (5)
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Figure 5: 3-dimensional representation of stimulus space helps to understand the STC. The gray points are
stimuli that did not cause the neuron to spike, while black points are stimuli that did cause the neuron to
spike. The red arrow is the STA, or the average of the black points. Right: The cloud of gray points is
normally distributed about the origin. The cloud of black points has a different mean than the gray, which
leads to the STA. Left: After projecting out the STA from the gray and black points, it is clear to see that
there is a difference in the variance of the two clouds, which leads to the STC.

where ke and ki denote the excitatory and inhibitory filters, respectively. Notice that in general
the STC method can be used to estimate parameters not only for the Linear-Nonlinear-Poisson
model but for the more general nonlinear model shown in equation (5); ke · s(t) and ki · s(t) can
be combined in any manner.

Now all that remains is to fit the nonlinear function F . Again we could fit a parametric form
to the function and estimate its parameters, but like the STA technique we will use the histogram
method, binning the possible values of (ke · s(t),ki · s(t)) and computing the average spike count
for each bin. Notice that this method will work with at most two filters (visually, at least); with
more than two filters parameter estimation would be a better choice.

3.2.1 STC Implementation

The STC algorithm builds on the STA algorithm, so much of the work is already done. Once
the STA has been calculated the next step is to project out the STA from each point in stimulus
space. If the STA has length s, then we want to look at a window of length s that slides along the
stimulus vector one time step at a time, projecting out the STA at each step. Once this is done we
can find the covariance matrix for the entire stimulus. This step is not important if the stimulus
is uncorrelated, which should be the case; however, upsampling the stimulus to get a better time
resolution introduces correlations in the stimulus, which will be important to keep track of for later.

At the same time we project the STA out of the stimulus vector, we can keep track of the stimuli
that caused a spike and calculate the covariance matrix for this set as well. In terms of figure 5(b),
the covariance of all stimuli will tell us about the variance of the cloud of gray points and the
covariance of the spike-triggering stimuli will tell us about the variance of the cloud of black points.
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By subtracting the stimulus covariance from the spike-triggering covariance we subtract out the
effects of the potentially correlated stimuli.

The next step is to find the eigenvectors and eigenvalues of the resulting covariance matrix.
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Figure 6: Left: Eigenvalues of the shifted spike-triggered covariance matrix. The large negative eigenvalue
has an eigenvector that corresponds to an inhibitory filter. Right: STA and STC filters recovered from the
STC algorithm. Plot is for a filter length of 15 times steps and an upsampling factor of 4.

The eigenvectors correspond to directions in stimulus space where the spike-triggering stimuli have
a larger variance than the entire stimulus (positive eigenvalues), no difference in variance (zero
eigenvalues), or a smaller variance (negative eigenvalues). We are interested in the eigenvalue cor-
responding to the smallest eigenvector (the negative eigenvalue with the largest magnitude), which
gives us an inhibitory filter.

Figure 6(a) shows the eigenvalues of this shifted covariance matrix for a filter of length 15
and an upsampling factor of 4. Notice most of the eigenvalues cluster around zero, except for one
eigenvalue that appears much smaller than the rest. In reference [4], the authors employ statistics
to address how many of the eigenvalues are significantly different than zero to capture the most
information possible in the model, but again we will only concern ourselves with the smallest eigen-
value for this project.

Figure 6(b) shows the resulting STA (excitatory) and STC (inhibitory) filters. Physically speak-
ing, any stimulus sequence that looks like the STC will decrease the probability of the neuron
spiking, whereas any stimulus sequence that looks like the STA will increase the probability of the
neuron spiking.

After the STA and STC have been recovered from the data, the next step is to determine the
neuron’s response function, which will again be found using the “histogram method”. Like the esti-
mation of the filters, most of the work has already been done for the STA. All that is required now
is to extend the algorithm to two dimensions. Figure 7 shows the plot of this discretized version of
the response function, along with information detailing the distributions of the generating signals
and the spikes counts along the direction of the STA and the STC.

Notice that, even though the resolution of the discretized function is low, it is possible to see
the effects of the inhibitory filter. Large values of the generator signal in the direction of the STA
(bottom of figure 7) have a high probability of causing a spike. However, the probability is de-
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Figure 7: Discretized version of the nonlinear response function. Darker bins represent a higher average
spike count. The plots on the side give the histogram of the generator signal count (the stimulus dotted
with the respective filter) and the histogram of spike counts. The average number of spikes per bin in each
of these directions is the spike count divided by the generator signal count for each bin.

creased for larger values of the generator signal in the direction of the STC (right of figure 7).
One failing of the histogram method in two (or more dimensions) is the poor scaling property.

If we want to increase the number of bins in each direction by a factor of n, the total number of
bins increases by n2. Since there is only a finite amount of data, this scaling will spread out the
spikes and leave the nonlinear response function with many bins that contain no spikes, as can
already be seen in the figure.

3.2.2 STC Validation

The implementation of the STC is relatively straightforward, so there is little in the way of valida-
tion. For the part of the algorithm that actually finds the direction of the STC in stimulus space,
recall that we are finding the covariance matrix of the spike-triggering stimuli and the covariance
matrix of all the stimuli, and taking their difference. We then find the eigenvectors and eigenvalues
of this difference.

If the code is working properly, and we then change every stimulus to be a spike-triggering
stimulus, the difference should be zero and the resulting eigenvalues will all be zero. Furthermore,
the associated eigenvectors will all be orthonormal vectors that span the stimulus space, which is
just the standard basis. The results of this procedure are shown in figure 8(a). All eigenvalues are
zero, and the recovered STC (which is the eigenvector that corresponds to the smallest eigenvalue)
is simply the first vector in the standard basis, as expected.

The second part of the STC algorithm involves finding the discretized function of the spiking
probability given the STA and the STC. This is a simple generalization of the code used in the STA

11



0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Eigenvalue Number

E
ig

en
va

lu
e

−125.1 −100.1 −75.0 −50.0 −25.0 0.0

0

1

time (ms)

 

 

STA

STC

Figure 8: Validation of the STC algorithm

section to two dimensions, and as such I did not validate the implementation. Please see appendix
A for more information.

4 Maximum Likelihood Estimators

The STA and STC algorithms are attractive in their simplicity, but are not powerful enough to
create more general models. One significant drawback is that the parameters of the STA (and
STC) can only be fit using spherically symmetric (normally distributed) stimuli [4]. The moment
based techniques also do not allow us to include other predictors in the model, such as spike history
dependence or network effects. For these reasons we move on to models that employ a much more
general technique for parameter estimation, maximum likelihood estimates.

4.1 The Generalized Linear Model

The Generalized Linear Model (GLM) is one such way to accomplish this task of improving param-
eter estimation by maximum likelihood estimates. We will take a step back into the realm of linear
models to explain the GLM and the maximum likelihood estimates, then apply these techniques to
nonlinear models in later sections.

The LNP model of neural response produces a rate parameter r(t) to an inhomogeneous Poisson
process. If n is the number of observed spikes in a short time ∆t, the conditional probability of
this event is given by

P (n|r(t)) =
(r(t)∆t)n

n!
e−r(t)∆t. (6)

If we are now interested in observing an entire spike train {nt}Tt=1, which is a vector of (assumed
independent) spike counts binned at a time resolution of ∆t, the conditional probability of this

12



event is given by

P ({nt}|{r(t)}) =
T∏
t=1

(r(t)∆t)nt

nt!
e−r(t)∆t (7)

where the product runs over each time bin and {r(t)} is the collection of rates, one for each
element in {nt}. Normally we would view this equation as the probability of the event {nt} given
the collection of rate parameters {r(t)}. Instead we want to look at it from a different perspective:
what is the likelihood that the collection of rate parameters is {r(t)}, given that the outcome was
{nt} (and that we are using a Poisson distribution)? Viewed in this way equation (7) becomes a
function of the collection of rate parameters {r(t)}, and is known as the likelihood function [7],
which we will denote with an L:

L({nt}|{r(t)}) =

T∏
t=1

(r(t)∆t)nt

nt!
e−r(t)∆t. (8)

The maximum value of this function, known as the maximum likelihood, will be located at the
values of the parameters of equation (1) that are most likely to produce the spike train {nt}, and
these are the parameters that we wish to find.

In practice it is easier to work with the log-likelihood function, since it transforms the product
into a sum. The parameters that maximize the log-likelihood function will be the same param-
eters that maximize the likelihood function due to the monotonicity of the log function. The
log-likelihood is often denoted using L so that, after taking the log of the likelihood function and
ignoring constant terms, equation (8) becomes

L({nt}|{r(t)}) =
T∑
t=1

nt log(r(t)∆t)−
T∑
t=1

r(t)∆t. (9)

This is where we begin to develop a model of this process. In practice we do not know what the
rates {r(t)} are for a given neuron, and so our goal will be to model them using some parametric
form of the rate r(t). The following sections will detail just how we can model r(t), but for now
the important point to keep in mind is that these parametric models will be defined by a set
of parameters that we will denote θ, as well as some sort of data that we will need to fit those
parameters, which we will denote D. Then the likelihood in equation 9 becomes a likelihood of the
parameters θ, so that

L({nt}|θ,D) =

T∑
t=1

nt log(r(t; θ,D)∆t)−
T∑
t=1

r(t; θ,D)∆t, (10)

where r(t; θ,D) indicates that r(t) depends on the parameters θ and the data D.
At this point we have an optimization problem to solve involving the parameters θ (which will

encompass the linear filter k and the nonlinear function F ). Fortunately, it has been shown by
Paninski in [8] that with two reasonable restrictions on the nonlinear function F the log-likelihood
function is guaranteed to have no non-local maxima, which avoids computational issues associated
with numerical ascent techniques. The restrictions are 1) F (u) is convex in its scalar argument u
and 2) log(F (u)) is concave in u.

In the literature ([8],[12],[16]) it is common to choose a parametric form of F that follows these
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restrictions, like F (u) = eu or F (u) = log(1 + eu), and then optimize the function over the filter k
and the parameters of the function F . The use of maximum likelihood estimates for the parameters
of the model is a powerful technique that extends the nonlinear models considered later in the paper.

4.1.1 GLM Implementation

The difficulty in implementing the GLM is coding the log-likelihood function L in an efficient man-
ner, since it is going to be evaluated numerous times by the optimization routine. Along with
the function itself, the gradient needs to be evaluated at every iteration, adding additional time
requirements.

To simplify equation 9, instead of thinking about the rate parameter r(t) as given in Hertz
(spikes per second), we can consider it to be the rate of spikes per bin. With this interpretation of
the rate, r(t)∆t then just becomes a scaled rate rbin.

Once the log-likelihood function has been coded the GLM implementation simply reduces to an
unconstrained optimization problem. To solve this optimization problem I began by implementing
the gradient descent method, which proved to work but took too much time to be practical. I then
decided to implement a Newton-Raphson method in the hopes of speeding up the optimization
time. While the number of function evaluations dropped, the time for each function evaluation
increased due to the need for the Hessian update at every iteration. Next I implemented a quasi-
Newton method, which is a nice compromise between gradient descent and Newton-Raphson: it
doesn’t involve the cost of computing the Hessian, and converges with fewer function evaluations
than the gradient descent.

I implemented the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant of the quasi-Newton
method, and validated it on a few test cases found online. I also found that my implementa-
tion was able to optimize the log likelihood function employed in the GLM. For a full description
of my implementation of the BFGS routine, please see appendix B.

As mentioned above there is a particular form for F that we can use to guarantee a non-local
minimum. The functional form that I have chosen to use is F (u) = log(1+exp(u)). Using this form
the complete log-likelihood function (and objective function of the optimization problem) becomes

L({rbin(t)}|{nt}) =

T∑
t=1

nt log(log(1 + ek·s(t)+a))−
T∑
t=1

log(1 + ek·s(t)+a). (11)

The optimization routine will find the (global) maximum log-likelihood, which will be at particular
values for k and a. a is an offset parameter that establishes the background firing rate of the model
in the absence of stimuli. As in the STA method, upsampling the stimulus vector results in an
increased resolution of the filter.

The optimization routine simultaneously finds the nonlinear function parameters; in this case
the function offset a. Like the STA, it is more instructive to view the resulting function relative to
the distribution of the generator signal, as shown in figure 9(b).

4.1.2 GLM Regularization

The next step in implementing the GLM is to introduce a regularization term. Regularization
helps the model to avoid overfitting, and also allows us to introduce a priori knowledge of the
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Figure 9: Left: Filters found using the GLM for various upsampling factors. Right: Response function for
a filter of length 15 time steps and an upsampling factor of 1, along with the histogram of generator signals.

solution. For a stimulus that is one-dimensional in time, avoiding overfitting amounts to penalizing
the curvature of the resulting filter; large curvatures indicate large fluctuations, which is typical
in overfitting. To reduce the total curvature of the filter, we can add a term to the log-likelihood
function that penalizes large values of the second derivative of the filter, which is given by the L2

norm of the discrete Laplacian applied to the filter. The discrete Laplacian is denoted as Lt and
is defined as a matrix that acts on a vector (in this case the vector is the filter) and returns the
difference between a component of the vector ai and the average of it’s two neighbors ai−1 and ai+1.
The edge elements are computed by linearly extrapolating the Laplacian values from the interior
points, so the matrix becomes

Lt =
1

2



2 −5 4 −1 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 · · · 0 0 1 −2 1
0 · · · 0 −1 4 −5 2


The log-likelihood function then becomes

L({rbin(t)}|{nt}) =

T∑
t=1

nt log(rbin(t))−
T∑
t=1

rbin(t)− λ‖Ltk‖22, (12)

where Lt is the discrete Laplacian in the time dimension, and λ modulates the effect of the regu-
larization term.

Now the question is, how do we choose an appropriate value of λ? It is not technically a
parameter of the model, but still a parameter that needs to be optimized, and is hence called a
hyperparameter. To optimize λ I employ cross validation.
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Figure 10: Results from the cross validation of the regularization hyperparameter. The top row (plots A-D)
shows the number of nats/spike for the test data. The bottom row (plots E-H) shows the corresponding
values of nats/spike for the validation data. The maximum nats/spike for the validation data is 0.9522 for
an upsampling factor of 4, and 0.9487 for an upsampling factor of 8. All plots are for a filter length of 15
time steps.

The first step is to divide the data into a number of equally sized pieces, called folds; in the
plots that follow, the data is divided into five folds. I choose an arbitrary value for λ and fit the
model parameters using four of the folds (the test data). I then use the remaining fold (the valida-
tion data) to determine how well the model generalizes to novel data by evaluating the likelihood
function with the validation data. This gives a value of the likelihood function for the particular
value of λ used.

This process is repeated using each of the five folds for the validation data, which will give five
values of the likelihood for the particular value of λ chosen. The value of the likelihood for this one
value of λ can then be computed by averaging the five values, or by more sophisticated methods.
This process is now repeated for different values of λ and the value that produces the largest value
of the likelihood is the optimal value of λ. Put another way, this is the value that maximizes the
likelihood that the given model produced the observed spike vector.

The plots go a step further than the process described above. For a single value of λ there
are five folds, which lead to five values of the likelihood. One way to account for variances that
might arise from random starting positions in the optimization routine is to average over many
starting positions. For each fold the likelihood is averaged over ten random starting positions, so
that there are fifty likelihood values. The average of these fifty values is plotted, along with error
bars indicating the standard deviation of the fifty values.

There is a difficulty in comparing likelihood values across models using different upsampling
factors, because the likelihood will depend on the bin size used. In order to properly compare these
models we look at the relative log likelihood (RLL) of each model, which is associated with the
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Figure 11: Resulting filters after regularization term has been included for an upsampling factor of 8,
showing its effect on the smoothness of the filter. The optimal value at λ = 150 is shown along with the
unregularized filter.

single spike information of the neuron in question. For a complete explanation of the relative log
likelihood measure, please see appendix C.

Figures 10 A-D show the value of the RLL using the test data that the model was fitted with,
for upsampling factors of 1, 2, 4 and 8 respectively. Figures 10 E-H, on the other hand, show the
RLL for the validation data.

The plots for an upsampling value of 8 show clear evidence of overfitting. The RLL for the
test data starts at a maximum value, indicating a good fit, and decreases as the regularization
parameter increases, indicating an increasingly worse fit. However, the RLL for the model on the
validation data increases during this same interval, indicating the model was initially overfitting
the data but is now able to generalize better. At λ = e5 ≈ 150, the RLL of the validation data
reaches a maximum. Figure 11 shows the filter with hyperparameters of λ = 0 (no regularization)
and λ = 150 (optimal regularization).

The plots for an upsampling value of 1 don’t show the same behavior. The RLL of the test
data does decrease with increasing regularization, but the validation data decreases as well. This
implies that regularization is not needed when there is no upsampling; there are not enough pa-
rameters to allow a significant degree of overfitting. The values of the RLL in figure 10 show a
marked increase as the upsampling factor is increased from 1 to 2 and from 2 to 4, but decreases
as the upsampling factor goes from 4 to 8. Figure 12 plots the dependence of the RLL on the
upsampling factor, and shows that it reaches a maximum around 6. The reasons for this have to
do with the time scales of the stimulus used, and are particular to the data set. The details are
discussed further in reference [15].
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4.1.3 GLM Validation

To validate the GLM model I employ the fact that Maximum Likelihood Estimates are consistent,
which means that for large enough sample sizes the estimates can be arbitrarily close to the true
values. More precisely, if θ̂n represents all of the parameters for the GLM model, estimated using
the maximum likelihood for a sample size of n, and if θ0 represents the true parameters, then a
consistent estimator is one such that, for any ε > 0, ([11])

lim
n→∞

P (|θ̂n − θ0| ≥ ε) = 0

To use this for validation purposes we can create an artificial filter, and from that filter we can
use the GLM to create firing rates. From these firing rates we can then reproduce spike trains using
the probability of firing in each bin. With these spikes trains and a stimulus of Gaussian random
noise we run the GLM program and hope to recover the original filter that the data was created
with. Due to the consistency of the Maximum Likelihood Estimates, increasing the length of the
spike train should decrease the error between the estimated filter and the filter we used to create
the data.

Figure 13(b) shows the mean square error (MSE) between the generating filter and the esti-
mated filter as a function of sample size. The MSE for the estimates do decrease with increasing
sample size, though it seems to level out at a nonzero value. Even still, the filter visually looks very
close the generating filter (figure 13(a), and my computer does not have enough memory to create
larger datasets in which to test the asymptotic values of the MSE.

4.2 Nonlinear Models

What makes the linear models like the GLM attractive is their ability to fit the data well, the
tractability in estimating their parameters, and the fact that some of these parameters can be
interpreted biologically. However, this method of linear stimulus processing fails to capture some
of the more subtle features of a neuron’s response; this is where the nonlinear models come in.
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Figure 13: Left: Filter used to generate the spike train, and the estimated filter using the GLM for 10000
time bins. There were approximately 1800 spikes. Right: The mean square error between the generating
parameters and the estimated parameters for increasing sample size, measured by the number of spikes
present.

The nonlinear models are a natural extension of the linear model, and in their general form are
given by the equation

r(t) = F
(
f1(k1 · s(t)), f2(k2 · s(t)), . . . , fn(kn · s(t))

)
(13)

where the fi’s can be combined in any manner. Increasing evidence in neuroscience literature
suggests that neural processing is performed by summing over excitatory and inhibitory inputs [16];
this fact, combined with increased ease of parameter estimation, leads us to make the assumption
that the inputs of the nonlinear models will be combined as a weighted sum, in which case the
nonlinear models are given by the equation

r(t) = F

(∑
i

fi(ki · s(t))
)
. (14)

The next two sections will examine particular instances of equation (14) and how the parameters
are fitted.

4.3 The Generalized Quadratic Model

The Generalized Quadratic Model (GQM) is an intuitive first step into the realm of nonlinear
models. It simply adds a quadratic term and a constant term to the LNP model considered in
equation (1), given by

r(t) = F

(
1

2
s(t)Cs(t) + bT s(t) + a

)
, (15)

where C is a symmetric matrix, b is a vector, and a is a scalar [12]. Similar to the implementation
of the GLM, we want to choose a parametric form for the nonlinearity F and maximize the resulting
log-likelihood function to estimate the parameter values of C, b and a.
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4.3.1 GQM Implementation

There are two immediate problems in transitioning from the GLM to the GQM if we want to
continue using maximum likelihood estimates. The first is that the argument of the spiking nonlin-
earity F is no longer convex, and the guarantee of a single global maximum for the log-likelihood
function given in [8] does not apply. However, in practice this function is still well behaved ([16])
and the same optimization procedures can be used.

The second problem is that with the introduction of the matrix C, the number of parameters
to fit becomes much larger than before. With a filter size of 15 times steps, the GLM has 16
parameters to fit (with one extra for the constant in the spiking nonlinearity). Now with a filter
size of 15 steps, we have 152 + 15 + 1 = 241 parameters to fit. In practice we can restrict C to be
symmetric, but this still leaves us with a much larger optimization problem.

Several approaches have been proposed to address this problem ([12], [13]), both of which at-
tempt to reduce the number of parameters to estimate. One way to do this is to make a low-rank
approximation to C, so that

C =

N∑
n=1

wnknk
T
n , (16)

which will have rank N . Each component of C is weighted with a constant wn, which is restricted
to be {±1}. Choosing the rank N and the weights wn will be addressed in the following section.
In this manner a filter can be interpreted as an excitatory input (wn = 1) or an inhibitory input
(wn = −1) and the GQM becomes

r(t) = F

(
1

2

N∑
n=1

(kn · s(t))2 + bT s(t) + a

)
. (17)

4.3.2 GQM Model Selection

The question of how to choose the rank N of the matrix C is a question of model selection, and we
are faced with certain trade-offs: we can find an increasingly good fit with lots of parameters, but
we also want to limit the degree of model complexity for ease of estimation, among other reasons.

Before we address this question, let’s redefine the problem in a way that will be more useful.
Instead of choosing the rank N of C, let us say there are N+ exitatory filters and N− inhibitory
filters; in this case, equation (17) becomes

r(t) = F

(
1

2

N+∑
e=1

(ke · s(t))2 − 1

2

N−∑
i=1

(ki · s(t))2 + bT s(t) + a

)
. (18)

Now we want to choose two numbers, N+ and N−, that give the “best” model from this class of
models (the GQM class). We will use two different metrics, Akaike’s Information Criterion (AIC)
and Bayesian Information Criterion (BIC). A comprehensive review of these two model selection
criteria can be found in [14].

AIC uses ideas from information theory, specifically the Kullback-Leibler (K-L) Information (or
Kullback-Leibler Divergence). We assume that there is a “true” probability distribution f , and we
wish to approximate that probability distribution with another distribution g , in this case the one
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given by our model. The K-L Information is a measure that tells us how much information we have
lost in our approximation, and is given by

I(f, g) =

∫
f(x) log

(
f(x)

g(x|θ)

)
dx, (19)

where θ is a set of parameters used to specify g . Ideally we would like to find the density g that
minimizes the information lost. The above equation can be rewritten as

I(f, g) = Ef [log(f(x))]− Ef [log(g(x|θ))], (20)

where the expectations are taken over the probability distribution f . The first expectation in
the expression is fixed for all possible models (since it represents the “truth”), and so we want
to maximize the second expectation. Akaike was able to show that an asymptotically unbiased
estimator of this expectation is

L(θ̂|data)−K, (21)

where L is the maximized log-likelihood function, θ̂ are the maximum likelihood estimates of the
model parameters given the data, and K is the number of estimable parameters in the model. The
AIC is then defined as

AIC = −2L(θ̂|data) + 2K (22)

and smaller values of the AIC represent less information loss.
To implement the AIC for the GQM model, the above equation that we would like to minimize

becomes
AIC = −2L(θ̂|data) + 2

(
(N+ +N− + 1)s+ 1

)
, (23)

where s is the length of each individual filter. We need to compute the AIC for various combinations
of N+ and N− through an exhaustive search of this parameter space, where each number can range
over the nonnegative integers. The procedure is as follows:

1. For a given pair of values (N+, N−), find the optimum regularization constant λ using k-fold
cross validation.

2. Find the optimum parameters (filters) using the entire data set (which corresponds to θ̂ in
the above equations), and using the value of λ found in step 1.

3. Compute the log-likelihood using the optimum filters and the entire data set to get L(θ̂|data),
and compute the AIC. The log-likelihood value computed at this step is not the penalized log-
likelihood value that includes the regularization term found in step 2.

4. Repeat for next (N+, N−) combination.
5. Choose the values of (N+, N−) that minimize the AIC.
In actually implementing this procedure we can repeat step 3 with 10 random initial starting

conditions and average the log-likelihood over these 10 values for each (N+, N−) combination. Once
all AIC values are computed we subtract off the smallest AIC value from each according to [14],
since the absolute difference between the values is what matters when ranking the models. Then
the “best” model has a value of 0, and the rest of the models have positive values that increase as
the models get worse according to Akaike’s Information Criterion.

The results are shown in the left in Tables 1 and 2; the parameter combination that results
in the smallest AIC value has 3 inhibitory quadratic filters and 0 excitatory quadratic filters (the
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N+\N− 0− 1− 2− 3− 4−

0+ 1479.3 535.9 94.5 0 1.7
1+ 1483.1 540.4 100.4 6.9 7.4
2+ 1499.4 555.8 117.4 26.6 25.1
3+ 1518.7 579.3 140.7 49.7 56.8

N+\N− 0− 1− 2− 3− 4−

0+ 1157.6 327.8 0 19.1 134.4
1+ 1275.0 445.9 119.58 139.7 253.8
2+ 1404.9 575.0 250.2 273.0 385.2
3+ 1537.9 712.1 387.1 409.6 530.4

Table 1: Right: AIC values for the GQM with an upsampling factor of 1. Left: BIC values for the GQM
with an upsampling factor of 1. Columns show the number of inhibitory filters used in the model (denoted
by N−) and rows show the number of excitatory filters used in the model (denoted by N+).

N+\N− 0− 1− 2− 3− 4−

0+ 2641.0 553.4 61.7 0 43.5
1+ 2684.7 591.4 320.9 121.8 1023.3
2+ 2739.4 4788.7 - - -

N+\N− 0− 1− 2− 3−

0+ 2083.3 243.7 0 186.4
1+ 2375.0 529.7 507.2 556.2
2+ 2677.8 4975.0 - -

Table 2: Right: AIC values for the GQM with an upsampling factor of 2. The smallest value corresponds to
a regularization constant of 12. Left: BIC values for the GQM with an upsampling factor of 2. The smallest
value corresponds to a regularization constant of 9. The regularization constant was allowed to take a value
from 0 to 39 by increments of 3. Columns show the number of inhibitory filters used in the model (denoted
by N−) and rows show the number of excitatory filters used in the model (denoted by N+).

linear filter b is an excitatory filter), which are all plotted in figure 14(a).
The second criterion we can use is the Bayesian Information Criterion, which was motivated

by placing priors on the distributions rather than using information theory, though reference [14]
shows that the BIC can be derived using methods similar to the AIC and vice-versa. The BIC
takes a similar form to the AIC, but also takes into account the size of the data set being used to
estimate the models. If the total number of data points used in model estimation is given by T ,
the BIC is

BIC = −2L(θ̂|data) +
(
(N+ +N− + 1)s+ 1

)
log(T ). (24)

The first thing to notice is that the BIC penalizes the number of parameters more heavily, since
log(T ) will be greater than 2 if we have 8 or more data points, which in this case we certainly do.
The results of the BIC are shown in the right in Tables 1 and 2, and we can see that the BIC indeed
penalizes parameters more heavily, and shows that 2 inhibitory quadratic filters and 0 excitatory
quadratic filters is optimal. The debate about whether to use AIC or BIC has been long running
in the literature, and the authors of [14] claim that the choice lies in a matter of philosophy and
also depends on the nature of the experiment.

4.3.3 GQM Validation

To validate the implementation of the GQM we can again use the fact that the Maximum Likelihood
Estimates are consistent estimators. We choose one inhibitory quadratic filter in addition to the
linear filter and generate a spike train using the GQM model. Figure 15 shows the recovered
quadratic filter, as well as the MSE as a function of sample size.
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Figure 14: Left: GQM filters from minimum AIC value for an upsampling value of 2. Right: GQM filters
from minimum BIC value for an upsampling factor of 2.

4.4 The Nonlinear Input Model

The implementation of the Nonlinear Input Model (NIM) is the overarching goal of this project.
The NIM considers the Poisson rate parameter to be a function of a sum of nonlinear inputs that
are weighted by ±1, corresponding to excitatory or inhibitory inputs [16]. The equation, similar to
equation (14), is given by

r(t) = F

(∑
i

wifi(ki · s(t))
)
, (25)

where the values of wi are restricted to ±1. This model can also be thought of as a two-layer LNP
model, or an LNLN model: The stimulus s(t) is projected onto various subspaces by the filters ki;
the functions fi transform these projections nonlinearly, and the results are summed linearly and
used as an input to the larger nonlinear function F , which in turn gives a rate for the inhomoge-
neous Poisson process.

For the purposes of this project we will assume parametric forms of the fi and F to make pa-
rameter fitting easier, though in practice the NIM can also fit these functions without an assumed
parametric form using a set of basis functions. The fi’s will be rectified linear functions, where
fi(u) = max(0, u); F will be of the form F = log(1 + eu), which guarantees no non-global maxima
in the case of linear fi’s and will in practice be well-behaved for the rectified linear functions [16].
With these assumptions made, the gradient ascent routine will only need to optimize the filters
ki. Up to this point we have ignored the history dependence of a neuron when when trying
to predict its output, and have instead focused solely on the stimulus dependence. For this im-
plementation of the Nonlinear Input Model, we have included this history dependence. It is well
established in neuroscience that neurons can display a variety of history-dependent behaviors. Be-
cause the very nature of an action potential involves changing the concentrations of ions inside the
neuron, there is an absolute refractory period when the neuron cannot create another action while
the ion concentrations reset. Past this point there is a relative refractory period, when the neuron
is capable of spiking but only under a more intense stimulus. There are also behaviors like bursting,
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Figure 15: Left: Quadratic filter used to generate the spike train, and the estimated filter using the GQM
for 10000 time bins. There were approximately 1800 spikes. Right: The mean square error between the
generating parameters and the estimated parameters for increasing sample size, measured by the number of
spikes present.

when a single action potential is followed by a series of action potentials in rapid succession [17].
It is clear that we should be interested in trying to characterize this history dependence as well.

Fortunately this addition to the model is relatively simple. We assume that the history depen-
dence is linear, so that if h is a vector analogous to the filters ki and n(t) is a vector of the previous
spikes counts over a certain temporal window at time t, then the NIM with this history component
becomes

r(t) = F

(∑
i

wifi(ki · s(t)) + h · n(t) + a

)
.

The components of the history vector h may be large and positive for small time lags, which in-
dicate that spikes very near time t will tend to increase the firing rate of the neuron; this would
correspond to a bursting neuron. If the components are large and negative for small time lags, then
spikes very near time t tend to decrease the firing rate and this is evidence of a refractory period
(see figure 16(b)). I have completed the model selection and testing for the NIM with and without
the history component, so that its effect can be seen on the model.

4.4.1 NIM Implementation

The implementation of the NIM is fairly straightforward once the GQM has been coded properly.
All that remains is to change the nonlinear functions (and their associated gradients) from quadratic
functions to rectified linear functions. The rectified linear functions are implemented in MATLAB
by finding the linear functions, then using logical indexing to set all values less than 0 equal to 0.

For example, if A is a matrix of positive and negative values, and L is a matrix of 0s and 1s
(a logical matrix), then the command A(L) = 0 will set every element of A equal to 0 where the
matrix L has a 1. The derivatives are implemented in MATLAB by using the step function, which
is 0 for any values less than 0 and 1 for any values greater than 0.
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The added history component, because it is linear, may be optimized at the same time as the
linear filters inside the nonlinearities fi.

4.4.2 NIM Model Selection

Like the GQM, the equation for the NIM involves a sum over an undefined number of nonlinear
functions, each associated with an excitatory or an inhibitory input. We will use the AIC and
BIC as before to determine what the optimal number of excitatory and inhibitory inputs are. The
results are given in Tables 3 and 4.

N+\N− 1− 2− 3− 4− 5−

0+ 3202.5 918.4 303.5 168.2 101.2
1+ 1301.7 311.5 79.5 0 44.3
2+ 1346.3 391.7 161.0 40.6 33.9

N+\N− 3− 4− 5− 6− 7−

0+ 768.7 275.1 145.1 64.7 39.0
1+ 339.7 83.5 28.9 0 18.16
2+ 379.8 170.6 66.4 19.6 17.1

N+\N− 0− 1− 2− 3− 4−

0+ 5868.8 2782.1 611.7 110.4 88.7
1+ 1815.1 995.0 118.4 0 34.1
2+ 1943.0 1153.2 312.2 195.1 188.3

N+\N− 1− 2− 3− 4− 5−

0+ 5063.4 1711.2 458.0 77.9 61.6
1+ 1509.2 593.6 142.6 0 59.0
2+ 1646.4 713.7 296.3 200.7 210.1

Table 3: Top Left (Right): AIC (BIC) values for the NIM with an upsampling factor of 1. Bottom Left
(Right): AIC (BIC) values for the NIM with an upsampling factor of 1 when the history component has
been added. Columns show the number of inhibitory filters used in the model and rows show the number of
excitatory filters used in the model.

N+\N− 2− 3− 4− 5− 6− 7−

0+ 1122.6 441.1 162.1 579.2 70.9 4050.3
1+ 292.0 11.5 71.5 75.9 0 42.0
2+ 315.7 229.8 6.5 81.8 132.8 160.4

N+\N− 2− 3− 4− 5− 6− 7−

0+ 1247.6 526.4 247.6 165.8 88.0 0
1+ 568.4 274.6 103.9 72.0 64.7 63.13
2+ 590.7 358.3 193.6 128.2 167.84 69.6

N+\N− 1− 2− 3− 4−

0+ 3851.7 615.0 181.5 150.6
1+ 1241.3 32.4 0 308.0
2+ 1537.9 304.2 466.3 491.0

N+\N− 2− 3− 4− 5−

0+ 503.9 30.7 0 166.1
1+ 72.8 26.9 194.2 320.4
2+ 343.1 358.7 442.0 624.6

Table 4: Top Left (Right): AIC (BIC) values for the NIM with an upsampling factor of 2. The smallest
value corresponds to a regularization constant of 15 (6). Bottom Left (Right): AIC (BIC) values for the NIM
with an upsampling factor of 2 when the history component has been added. The smallest value corresponds
to a regularization constant of 3 (3). The regularization constant was allowed to take a value from 0 to 21
using increments of 3, and is the same for all filters. Columns show the number of inhibitory filters used in
the model and rows show the number of excitatory filters used in the model.
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Figure 16: Left: NIM filters from minimum BIC value for an upsampling value of 2. Right: NIM history
component for an upsampling factor of 2.

4.4.3 NIM Validation

To validate the implementation of the NIM we can again use the fact that the Maximum Likelihood
Estimates are consistent estimators. We can choose one excitatory and one inhibitory nonlinear
filter for the spike train generation, as well as a spike history term to mimic a refractory period.
Figure 17(a) shows the recovered history term, for which the Maximum Likelihood Estimate was
the least accurate, as seen in figure 17(b).

5 Databases & Implementation

The dataset that was used to develop the above models is from a Lateral Geniculate Nucleus neu-
ron’s response to a single pixel of temporally modulated white noise stimuli, found at http://www.clfs.umd.edu-
/biology/ntlab/NIM/. The data consists of two parts, one for fitting and one for testing. The first
is a stimulus vector that contains the pixel value, changing every 0.0083 seconds, for 120 seconds
which gives a total of 14, 391 values (FFstim). Along with this is a vector that holds the time
in seconds at which a spike was recorded (FFspks). The second part of the data consists of a 10
second stimulus (FFstimR), again changing every 0.0083 seconds, and 64 separate trials during
which spike times were recorded (FFspksR).

6 Testing

Testing of the various models will be performed using two metrics: the cross-validated relative log
likelihood and the fraction of variance explained. All testing is performed using the LGN data set
described in the previous section.
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Figure 17: Left: The history dependence used to generate the spike train (along with one inhibitory
and one excitatory filter), and the estimated dependence using the NIM for 10000 time bins. There were
approximately 2000 spikes. Right: The mean square error between the generating parameters and the
estimated parameters for increasing sample size, measured by the number of spikes present.

6.1 Cross Validation

The relative log likelihood is a measure of the amount of information a single spike possesses about
the stimulus in our model. The measure used here uses the log-likelihood of the model LLmodel,
minus the log-likelihood of the “null” model LLnull, divided by the total number of spikes. The
null model predicts a constant firing rate independent of the presented stimulus. This measure has
a minimum value of 0, when the model only predicts a constant firing rate, and a maximum value
of the single spike information (SSI) when the model predicts the correct firing rate for every time
bin. Please see appendix C for a more detailed explanation.

To compute this measure we can use 10-fold cross validation on the dataset FFstim and FFspks
for each model. To do this, we need to divide the dataset into 10 pieces and fit the parameters
on 9 of the pieces, then find the relative log likelihood of the model using those parameters and
the 10th piece of the dataset. We then repeat 9 more times, using each tenth of the dataset once
for the validation. The average of these ten values is then used as the cross-validated relative log
likelihood of the model.

For the GLM, GQM and NIM, when the upsampling factor is greater than 1 we also need to
take regularization into account. We find the regularization constant by performing a round of
10-fold cross validation on each model using the FFstimR and FFspksR dataset. (This procedure
is described in detail in the section on GLM regularization.) The constant that gives the highest
relative log likelihood in this test is then used for the cross validation on the FFstim and FFspks
dataset.

Additionally, the GQM and the NIM have optimal numbers of excitatory and inhibitory filters
that in principle need to be found using different data. Due to the long computation times (table
2 took more than 100 hours to create), I simply used the optimal filter numbers that were found
using FFspks and FFstim previously, as described in the section on GQM model selection.

One further complication that needs to be clarified is how we can determine the log likelihoods
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of the STA and STC models. The same equation was used for these two models,

L({rbin(t)}|{nt}) =

T∑
t=1

nt log(rbin(t))−
T∑
t=1

rbin(t),

again where rbin(t) is the probability of firing in each time bin given by the model and yt is the
observed spike counts in each bin. However, because the STA and STC utilize discrete nonlinear
functions determined using the histogram method, there are occasions where there is not enough
data to fully characterize the equation, especially for the 2-dimensional STC function. If there is a
bin that is empty because there are no data points, I take the average of the neighbors to determine
a value for that bin. In the STA these are the 2 neighbors on the sides, and in the STC these are
the 8 surrounding neighbors (given that the bin is not on the boundary and that all neighbors have
values; if this is not the case, then only the average of the neighbors that exist is used).

Figure 18 shows the results from the cross validation. One feature to note is that the models
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Figure 18: Left: Cross validation of the relative log likelihood (see appendix C) for the models considered in
this paper, for an upsampling value of 1. NIMh refers to the NIM model with the history component added.
Right: Comparison for an upsampling value of 2. For both plots, 10-fold cross validation was used, and
20 bins were used for the STA and STC discrete nonlinearities. For the right plot, all 4 of the MLE-based
models used regularization, which was found searching through a hyperparameter space starting at 0 and
going to 21 by increments of 3. The number of excitatory and inhibitory filters used for the GQM, NIM and
NIMh models for both upsampling factors are the optimal combinations found by the BIC.

with the smallest RLLs are the linear models (STA and GLM); the remaining four nonlinear models
perform substantially better. Also note that the added history component in the NIM has improved
its performance, and we could expect similar results with the GLM and the GQM if the history
term was included.
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6.2 Fraction of Variance Explained

The fraction of variance explained (FVE) is a scalar metric that compares the mean square error
of the model’s predicted firing rate to the variance of the observed firing rate ([16]):

FV E = 1− MSE(rmodel)

V ar(robs)
(26)

The simplest model of the neuron’s firing rate predicts the average firing rate at each time bin;
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Figure 19: Top: Raster plot of a neuron’s response to the same stimulus over 60 trials, along with the
peri-stimulus time histogram underneath to approximate the neuron’s firing rate. A bin size of 8.3 ms was
used. Bottom Left: The rate predictions of the STA and STC, which were trained on a different set of data.
Bottom Right: The rate predictions of the GLM, GQM and the NIM with the history component added. A
zoomed in version is shown that displays an increase in activity that is particularly well described by all 3
models (the PSTH is the same as the rate predicted by the NIM) and a separate increase in activity that all
3 models have difficulty capturing.

the MSE of this model is then equal to the variance of the observed spike train, and the FVE is 0.
On the other hand, if the model perfectly predicts the firing rate in each time bin, the mean square
error of rmodel is equal to zero and the fraction of variance explained is equal to 1.
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Of course we cannot decipher the neuron’s firing rate from a single spike train; instead we try to
approximate it by presenting the same stimulus to the neuron over and over again, and recording
the spiking pattern for all of these repeat trials, as shown at the top of figure 19(a). We can then
divide the length of the experiment into time bins and approximate the probability of the neuron
firing in a given time bin by looking at the proportion of repeat trials for which this neuron fired.
This probability, multiplied by the size of the time bin, then gives the firing rate of the neuron
during that time period. This is called the peri-stimulus time histogram, or PSTH for short.

The bottom half of figure 19(a) shows how this firing rate varies, and matches up with the
aligned spikes above. The spikes were taken from 60 repeat trials of the same stimulus, and a time
bin of width 8.3 ms was used. All of the models were fit using a separate set of stimulus/response
data, and then these parameters were used to fit the firing rate of the neuron in response to this
novel stimululs. Figure 19 shows how the moment-based estimators and the maximum likelihood-
based estimators perform in matching this response. The FVE metric attempts to quantify this
difference between the neuron’s response and the models’ ability to capture that response.

Figure 20 shows how the different models compare using this metric. The blue bars are for the
case when the upsampling factor is 1, so that the parameters are fit using the same bin size that
the PSTH is calculated with, namely 8.3 ms. For an upsampling factor of 2, this bin size is 4.15
ms. Notice that, unlike the relative log-likelihood metric, the FVE decreases for decreasing bin
size. Intuitively this is because the models are better able to describe the neuron’s behavior for
coarse time intervals: at one extreme, if there is just one bin then the model only needs to be able
to capture the average firing rate of the neuron to attain an FVE of 1, with no regard to temporal
fluctuations of the rate that are driven by the stimulus.
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Figure 20: Fraction of variance explained by the various models for two time bin sizes.
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7 Project Schedule and Milestones

The project schedule will be broken into two phases, roughly corresponding to the fall and spring
semesters.

PHASE I - October through December

• (DONE) Implement and validate the STA (October)

• (MOVED) Develop code for gradient ascent method and validate (October)

• (DONE) Implement and validate the GLM with regularization (November-December)

• (DONE) Complete mid-year progress report and presentation (December)

PHASE II - January through May

• (DONE) Develop code for gradient ascent method and validate (January)

• (DONE) Implement and validate the STC (January-February)

• (DONE) Implement and validate the GQM (January-February)

• (DONE) Implement and validate the NIM with linear rectified upstream functions (March)

• (DONE) Develop software to test all models (April)

• (DONE) Complete final report and presentation

8 Deliverables

At the end of the year I will present the following deliverables:

• Implemented MATLAB code for all of the models STA, STC, GLM, GQM, NIM

• Implemented MATLAB code for the validation and testing of all the models

• Documentation of all code

• Results of validation and testing for all the models

• Final presentation and report

9 Conclusion

There have been many developments in neural modeling over the past two decades. Moving away
from the biophysical models established by Hodgkin and Huxley has allowed researchers to ask new
questions and discover new phenomena that might not otherwise have been possible.

The moment based estimators were at the forefront of this burgeoning interest in statistical
descriptions of neurons. Their ease of implementation and use makes them easily accessible to
researchers in the neuroscience field who might not have a strong background in mathematics. As
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we have seen, the STC model is also quite competitive with its maximum likelihood counterparts.
The main drawback to these models, however, are their need for spherically symmetric stimuli for
fitting model parameters. Though corrections exist for other types of stimuli, these corrections
begin to muddle the simple mathematics that make these models so attractive in the first place.

The introduction of the maximum likelihood based estimators puts the problem of model design
in much richer framework of statistical rigor. Though we can see from the testing that the GLM
behaves poorly even compared to the STA, the promise of the GLM is that its ideas can be extended
to more powerful models like the GQM and the NIM. Along with the ability to specify particular
classes of covariates in these models - including the stimulus, the spiking history, even the spiking
history from other neurons - there are principled, well-developed methods to attach confidence
bounds to our estimates, employ regularization, and explore other ideas in statistics that can lead
to better models.

As experimental techniques in neuroscience progress, along with the ability to collect ever larger
volumes of data, characterizing the responses of individual neurons is going to become an easier
and arguably more interesting task in systems neuroscience. Hopefully the models can keep up.
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A Validation of STA Histogram Method

The histogram method is a technique that can be used to find a discretized approximation to the
nonlinear response function F that appears in the Linear-Nonlinear-Poisson (LNP) model. The
algorithm works by dividing the range of the generator signal values k · s(t) in a number of bins.
For each value of the generator signal we record which bin that value falls in and we also record
whether or not there was a spike associated with that generator signal; the average number of spikes
for generator signals that fall into a particular bin is then just the fraction of these two numbers:

F̂ (ub) =

∑
t 1spike(t) · 1ub<u(t)≤ub+1∑

t 1ub<u(t)≤ub+1

, (27)

where F̂ is the discrete approximation to the nonlinear response function, u is the generator signal
k · s(t), and ub is a generator signal whose value falls in bin b.

To validate my implementation of this algorithm, I first populate a generator signal vector
with random Gaussian noise. For each value of the generator signal a corresponding spike is then
inserted in the spike vector on a probabalistic basis. A random number rand is drawn from a
uniform distribution, rand ∈ U(0, 1). Then we evaluate the Gaussian cumulative density function
at the value of the generator signal u and determine the probability of a spike by

P(spike) = P(rand ∈ U(0, 1) < cdf(u)|u) = cdf(u) =

∫ u

−∞

1√
2π
e−t

2/2dt (28)

The above algorithm for the histogram method, when run on this stimulus vector and associated
spike vector, should produce the Gaussian cumulative density function. The proof of this statement
is what follows, and is attributed to Dr. Radu Balan.

What we will show is that the expected value of the function F̂ for the bin b is the Gaussian cdf
with a small corrective term that is negligible under the circumstances. T will denote the length
of the generator signal vector.

E[F̂ (ub)] = E
[
E[F̂ (ub)|k signals in bin b]

]
(29)

=

T∑
k=1

E[F̂ (ub)|k signals in bin b] · P(k signals in bin b) (30)

Let us look at the two parts of the term in the sum in equation 30. For the first part, the
expected value of F̂ given that k values of u fall into bin b can be found by looking at equation 27;
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the bottom value is k, and the top number is the expected number of spikes:

E[F̂ (ub)|k signals in bin b] = E

[
1

k

k∑
tk=1

spike(tk)

]
(31)

=
1

k

k∑
tk=1

E[spike(tk)] (32)

<
1

k

k∑
tk=1

cdf(ubM ) (33)

=
1

k

k∑
tk=1

∫ ubM

−∞

1√
2π
e−t

2/2dt (34)

=

∫ ubm

−∞

1√
2π
e−t

2/2dt (35)

where ubM is the maximum value of the interval in bin b. For the second part, the probability that
k values are in bin b, we can use the fact that the samples are independent of each other since
they have been drawn independently from the Gaussian distribution. To find the probability that
k values are in bin b we can then use the binomial distribution. If we use the notation

p = P(u(t) in bin b) =

∫ ubM

ubm

1√
2π
e−t

2/2dt (36)

again where ubM is the maximum value of the interval in bin b and ubm is the minimum value of
the interval in bin b. Then

P(k signals in bin b) =

(
T

k

)
pk(1− p)T−k (37)

so that, when we put these two parts together, equation 30 becomes

E[F̂ (ub)] <
T∑

k=1

cdf(ubM ) ·
(
T

k

)
pk(1− p)T−k (38)

= cdf(ubM )

T∑
k=1

(
T

k

)
pk(1− p)T−k (39)

= cdf(ubM ) · (1− (1− p)T ) (40)

In a similar manner we can establish a lower bound for E[F̂ (ub)], and find that

E[F̂ (ub)] > cdf(ubm) · (1− (1− p)T ). (41)

Note that in practice the value of T , the total number of generator signals, is greater than 10,000,
so that the term (1−p)T is essentially zero. Hence the expected value of the discrete approximation
to F using the histogram method in this validation case should be the Gaussian cumulative density
function.
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Figure 21: Validation results for the histogram method. The method should recover the Gaussian cdf in
this test instance.

B Implementation of a quasi-Newton optimization algorithm

A quasi-Newton method can be implemented to solve unconstrained optimization problems, and
is better suited for optimizing the log-likelihood function of the GLM than either the steepest
descent method or the Newton method. The steepest descent method can easily get stuck in
local minima and generally takes many iterations to converge. Newton’s method, on the other
hand, can find a minimum in many fewer iterations but at the cost of evaluating the Hessian,
which takes an impractical amount of time for the log-likelihood function. Newton’s method works
by approximating the function at the current point with a second degree Taylor expansion, and
choosing a descent direction that minimizes this quadratic approximation [18].

The vector form of a second degree Taylor expansion, centered at the point xk, is given by

fT (xk+1) = f(xk) +∇f(xk)∆x +
1

2
∆xTH∆x,

where ∆x = xk+1 − xk. Taking the derivative of this expression with respect to ∆x and setting
the result equal to zero, the update equation for Newton’s method is achieved:

xk+1 = xk −H−1∇f(xk).

The descent direction, then, is pk = −H−1∇f(xk) and is generally calculated by solving the system
of equations Hpk = −∇f(xk) rather than inverting the Hessian.

It is often the case that we are concerned not only with the descent direction, but with the
magnitude of that step as well. The update equation then becomes

xk+1 = xk + αkpk
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where αk is a step size. Defining the proper size of αk can be done in various ways, the most
common of which is a set of conditions known as the strong Wolfe conditions, which state that

1) f(xk + αkpk) ≤ f(xk) + c1αkp
T
k∇f(xk)

2) |pT
k∇f(xk + αkpk)| ≤ c2|pT

k∇f(xk)|.

The first condition ensures that the function value decreases sufficiently along the direction of pk,
where “sufficiently” is governed by the value of c1. A typical value given in reference [18] is 10−4.
The second condition ensures the slope is reduced sufficiently, and tends to keep the step size from
becoming too small. Again this is governed by the value of c2, a common value of which is 0.9 [18].
Various line search methods exist to find appropriate values of αk, many of which can be found in
reference [18].

The quasi-Newton method works the same as Newton’s method, except instead of calculating
the Hessian at each iteration it makes a low-rank update to an approximate Hessian. This approx-
imation can be updated using several different formulas, and the particular implementation that I
chose is called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. If pk is descent direction
on iteration k, αk is the size of the step length, then

sk = αkpk,

yk = ∇f(xk+1)−∇f(xk),

and the update formula is

Bk+1 = Bk +
yky

T
k

yT
k sk
−
Bksks

T
kBk

sTkBksk
, (42)

where Bk is the approximate Hessian at iteration k.
Table 5 compares my own implementation of the BFGS quasi-Newton method with several of

Matlab’s built-in optimization routines - the steepest descent method, the BFGS quasi-Newton
method, and the trust region method. My BFGS routine was able to find the correct minimum
for three test functions, the 2D sphere function, the 2D Rosenbrock function, and the 2D Beale’s
function. Though the total number of iterations for my own routine is comparable to Matlab’s
quasi-Newton method, the number of iterations is far greater.

This higher number of iterations comes from my implementation of the line search method,
which does not recycle evaluated function information as efficiently as Matlab’s. Even still the
times are comparable, mostly because these functions only have two parameters. As the number
of parameters increases Matlab’s routine begins to outperform my own.

The bottom of the table displays comparisons between Matlab’s routines and my own when
run on the log-likelihood function that must be minimized for the GLM. This information is for a
filter of length 15, an upsampling factor of 1, and a regularization hyperparameter value of 1. The
steepest descent routine performs surprisingly well, though this performance deteriorates rapidly
for higher upsampling factors. Again my own BFGS implementation is comparable to Matlab’s in
terms of iterations, but still needs more function evaluations. The tolerance for all four routines
was set to 1e−4, and figure 22 shows the filter differences between my implementation of the BFGS
and the three Matlab routines.
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2D sphere function - min: (0,0)

Algorithm Iterations Func Evals time (s)

Matlab Steepest Descent 1 2 0.0175
Matlab Quasi Newton 1 2 0.0100

Quasi Newton 2 7 0.0065
Matlab Trust Region 1 - 0.0372

2D Rosenbrock function - min: (1,1)

Algorithm Iterations Func Evals time (s)

Matlab Steepest Descent 2405 8444 4.4467
Matlab Quasi Newton 38 54 0.0766

Quasi Newton 40 164 0.0218
Matlab Trust Region 30 - 0.2055

2D Beale’s function - min: (3,0.5)

Algorithm Iterations Func Evals time (s)

Matlab Steepest Descent 406 1017 0.5986
Matlab Quasi Newton 15 16 0.0543

Quasi Newton 14 58 0.0218
Matlab Trust Region 9 - 0.0763

Log-likelihood function

Algorithm Iterations Func Evals time (s)

Matlab Steepest Descent 14 88 1.5807
Matlab Quasi Newton 35 84 1.5620

Quasi Newton 39 134 3.0044
Matlab Trust Region 8 - 2.6880

Table 5: Comparison of my implementation of the quasi-Newton method using the BFGS update formula
to several of Matlab’s built-in routines for three test functions and the log-likelihood function. Note that
Matlab output does not give function evaluations for the trust region method.
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Figure 22: Values for the difference between the filter found by my own implementation of a quasi-Newton
routine and the filter found by three of Matlab’s built-in routines. The tolerance for all routines was set to
1e − 4; the filter was found through the GLM model with a filter length of 15 time steps, an upsampling
factor of 1 and a regularization hyperparameter of 1.

C Relative Log Likelihood Measure

In comparing the various models in this report it will be instructive to look at a measure that is
intimately related to the maximum likelihood, but compares each model with the simple model that
predicts the average firing rate. This model will be referred to as the “null model”, and is given by
the total number of spikes divided by the number of time bins in the experiment. Thus this model
treats each time bin as a Bernoulli trial with constant probability of seeing a spike, independent
of time. Interestingly, this measure also happens to be linked to the Single Spike Information, a
measure developed in reference [9], which is where the following derivation comes from.

The Single Spike Information (SSI) quantifies the amount of information that a single spike
carries. To derive this quantity, we will consider discrete time bins of width ∆t, and take ∆t
small enough that each time bin has either 0 spikes or 1 spike. The mutual information between
a stimulus and a response used here was first proposed in reference [10]. We will use the notation
H[R] to denote the entropy of the response distribution, given by

H[R] = −
∑
r

p(r) log(p(r))

and H[R|t] to represent the entropy of the response distribution at a particular point t in time.

H[R|t] = −
∑
r

p(r|t) log(p(r|t))

Reference [10] shows how this conditional entropy can be equivalent to the entropy of the response
distribution given a particular stimulus. With this notation, the mutual information between the
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stimulus (in this case time) and the response is

I(R, time) = H[R]− ∆t

T

∑
t

H[R|t]

= −
∑
r

p(r) log(p(r)) +
∆t

T

∑
t

∑
r

p(r|t) log(p(r|t))

The first term on the right hand side represents the total information capacity of the response, and
the second term represents the noise entropy, or the variability of the response for a given stimulus,
averaged over all stimuli.

From here we want to find the mutual information between a single spike (the response) and
the stimulus in a single time bin. In this case there are only two responses, 0 spikes or 1 spike. The
relevant probabilities are:

p(r = 1) = r̄∆t

p(r = 0) = 1− r̄∆t
p(r = 1|t) = r(t)∆t

p(r = 0|t) = 1− r(t)∆t

With these probabilities, and using the fact that r̄ = ∆t/T
∑T

t r(t), the mutual information be-
comes

I(R, time) = −r̄∆t log(r̄∆t)− (1− r̄∆t) log(1− r̄∆t)

+
∆t

T

∑
t

r(t)∆t log(r(t)∆t) +
∆t

T

∑
t

(1− r(t)∆t) log(1− r(t)∆t)

= −∆t

T

∑
t

r(t)∆t log(r̄∆t)− ∆t

T

∑
t

(1− r(t)∆t) log(1− r̄∆t)

+
∆t

T

∑
t

r(t)∆t log(r(t)∆t) +
∆t

T

∑
t

(1− r(t)∆t) log(1− r(t)∆t)

=
∆t

T

∑
t

r(t)∆t log

(
r(t)∆t

r̄∆t

)
+

∆t

T

∑
t

(1− r(t))∆t log

(
1− r(t)∆t

1− r̄∆t

)
This is the mutual information between the stimulus and the response in a single bin of duration
∆t. To find the single spike information, we divide this mutual information by the probability of
seeing a spike, which is r̄∆t and get

I(R, time) =
1

T

∑
t

r(t)

r̄
∆t log

(
r(t)∆t

r̄∆t

)
+

1

T

∑
t

1− r(t)
r̄

∆t log

(
1− r(t)∆t

1− r̄∆t

)
Now, in the limit as ∆t → 0, the second sum goes to zero and the first sum becomes an integral
over time:

lim
∆t→0

I(R, time) =
1

T

∫ T

0

r(t)

r̄
log

(
r(t)

r̄

)
dt

=
1

Nspikes

∫ T

0
r(t) log

(
r(t)

r̄

)
dt
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The final equation is what is known as the single spike information, and has units of bits per spike
if the logarithms are base 2. If the logarithms are natural logarithms with base e, the units become
nats per spike. In discrete time, the SSI is

SSI =
1

Nspikes

∑
t

r(t)∆t log

(
r(t)

r̄

)
. (43)

Next we will see how this relates to the maximum likelihood. Let us assume that our model
predicts the probability of spiking in a single time bin, i.e. r(t)∆t = F (k · s(t)) in the case of the
GLM. In the GLM section this quantity r(t)∆t was referred to as rbin, but to make notation simpler
we will drop the ∆t with the understanding that r(t) is the probability of seeing a single spike in
a bin at time t, and 1− r(t) is the probability of seeing no spikes in a bin at time t. Furthermore,
the observed rates robs(t) will be restricted to the values 0 and 1, indicating that there was in fact
a spike in that bin or there were no spikes.

The log-likelihood of this model, as given in equation (9), becomes

LLmodel =
∑
t

robs(t) log(r(t))−
∑
t

r(t), (44)

where LLmodel refers to the fact that this is the log-likelihood of the full model. The log-likelihood
of the null model is given by

LLnull =
∑
t

robs(t) log(r̄)−
∑
t

r̄

= log(r̄)
∑
t

robs −Nspikes

= Nspikes(log(r̄)− 1)

Now let us assume that our model is perfect, and that r(t) = robs(t) for all time t. Then this
equation becomes

LLobs =
∑
t

robs(t) log(robs(t))−
∑
t

robs(t)

=
∑
t

robs(t) log(robs(t))−Nspikes

and, adding and subtracting a factor of
∑

t robs(t) log(r̄), this becomes

LLobs =
∑
t

robs(t) log

(
robs(t)

r̄

)
+
∑
t

robs(t) log(r̄)−Nspikes

= Nspikes ∗ SSI +Nspikes(log(r̄)− 1)

= Nspikes ∗ SSI + LLnull

⇒ SSI =
LLobs

Nspikes
− LLnull

Nspikes
.

Now, since our model can never have a higher likelihood than the observations on which it is based,
LLmodel ≤ LLobs and we arrive at

SSI ≥ LLmodel

Nspikes
− LLnull

Nspikes
. (45)
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We will now define the relative log likelihood (RLL) as

RLL =
LLmodel

Nspikes
− LLnull

Nspikes
(46)

which is the log-likelihood per spike of our model minus the log-likelihood per spike of the null
model. From equation 45, the RLL has an upper bound of the Single Spike Information, which is
derived from the data itself. Therefore, the RLL of the “null model” is 0 and the RLL of the perfect
model has a value of SSI. This allows us to compare different models, since the model with the
highest value of LLmodel−LLnull per spike will best approximate the SSI. Furthermore, the units of
this log-likelihood difference is given in bits/spike or nats/spike, depending on the logarithm used.
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